
1 
 

Short Note 

Strengthening Discrete-Time Scheduling Formulations by Introducing 
the Concept of Campaigns  

Diego C. Cafaroa & Ignacio E. Grossmannb 
a INTEC(UNL-CONICET), Güemes 3450, 3000 Santa Fe, ARGENTINA 
b Dept. of Chem. Eng., Carnegie Mellon University, 5000 Forbes Ave, 15213 Pittsburgh, PA 

 

Abstract 

Discrete-time, Mixed-Integer Linear Programming (MILP) models are frequently used for scheduling 
problems in which the utilization of resources and/or the determination of costs and revenues imply 
complex time-dependent functions, directly related to the development of the tasks. One of the main 
challenges in these models is to deal with changeovers, which are one of the most complicating features. 
In this short note, we provide some insight to effectively model the scheduling of operations by means of 
the concept of campaigns. This allows to reduce the computational burden by three orders of magnitude 
when compared to conventional approaches.  

 

Introduction 

Time-indexed Mixed-Integer Linear Programming (MILP) optimization approaches are the first choice to 
model scheduling problems in which the consumption of resources, the determination of costs and/or the 
calculation of revenues imply complex time-dependent functions, directly related to the implementation 
of tasks (Kondili, Pantelides & Sargent, 1993; Shah, Pantelides & Sargent, 1993; Castro, Barbosa-Povoa & 
Matos, 2001; Moniz, Barbosa-Póvoa & de Sousa, 2013). In discrete-time formulations, holding and 
backlogging costs can be modeled with linear terms (Velez, Dong & Maravelias, 2017), hyperbolic decline 
functions can also be accounted for (Cafaro & Grossmann, 2014), and piecewise, nonlinear, non-
differentiable functions can be also tracked linearly (Zeng & Cremaschi, 2017; Drouven, Cafaro & 
Grossmann, 2017). Although these MILP models lead to tight linear (LP) relaxations, most of the 
complexity of the discrete-time models comes from their large number of constraints, especially when 
sequence-dependent changeovers are considered. Ondeck et al. (2019) prove that most of the 
computational burden when solving the optimal planning of wellpad development operations comes from 
the need to consider resource mobilization costs. However, under certain conditions, changeover costs 
can be modeled more effectively as is shown in this short note. Specifically, we address scheduling 
problems in which changeover (or resource mobilization) costs are paid every time a new sequence of 
jobs of the same class is started. We propose to model sequences of operations by means of the concept 
of campaigns, which yields very tight formulations. This reduces the computational burden by about three 
orders of magnitude, when compared to conventional discrete-time approaches.  

  
 



2 
 

Motivating Example 

Assume we are given a set of n jobs (k = 1…n) that must be executed in a single machine. Jobs are of 
different classes and there are sequence-dependent changeover costs, but depending only on the classes. 
More precisely, every time a new job of class i starts, a fixed changeover cost ci must be paid, except for 
the case when a job of the same class is being completed, and the job sequence is continued with no 
interruption. A real-world problem with these characteristics is the shale gas well development planning 
problem, in which a fracturing crew (machine) has to complete a set of wells (jobs), grouped in different 
wellpads (classes). Many wells of the same pad might be completed during a single visit of the fracturing 
crew to the pad. Longer stays, completing more wells in a row, reduce mobilization costs. However, the 
longer the crew stays at a pad, the later revenues are obtained from gas production, since wells do not 
produce gas until they are turned-in-line, and turn-in-line operations need to be postponed after long 
fracturing campaigns. The problem is very hard to solve to optimality (Ondeck et al., 2019), and one of 
the main reasons is the way changeover or mobilization costs are modeled. From now on, we focus on 
how to model changeover costs.  

Suppose we need to schedule an even number of jobs (n) in a single machine, with half of the jobs 
belonging to class A, and the other half to class B. For simplicity, suppose that every job has a deterministic 
duration of q time periods, no matter the class. Regarding changeovers, we account for three different 
situations: 

(a) Changeover costs are null for every pair of subsequent jobs involving the same class (sequence A-
A or B-B), as shown in Figure 1. 

(b) Changeover costs are equal to ci if a job of class i follows a job of a different class (sequence A-B 
or B-A).  

(c) Changeover costs are equal to ci if a job of class i is performed after an idle period. 

 

Figure 1. Gantt chart illustrating changeover costs for a sequence of jobs of two classes in a single 
machine scheduling problem 

In the simplest case, idle times are not allowed, and alternative (c) is not an option. Besides, changeover 
times are neglected, meaning that the total number of time periods in the time horizon is simply T = 1… 
q·n. The aim is to sequence every job in the single machine so that the total profit is maximized. If revenues 
are independent of the production sequence, the optimal solution is straightforward: perform all jobs of 
class A and then all of class B, or vice-versa. However, to investigate the computational performance of 
two different MILP formulations to solve this problem, we consider: (a) a conventional discrete, time-
indexed scheduling formulation (Kondili, Pantelides & Sargent, 1993; later improved by Shah, Pantelides 
& Sargent, 1993; Wolsey, 1997; and Velez, Dong & Maravelias, 2017), and (b) a tighter, higher-dimensional 
formulation, by introducing the concept of campaigns. Later in the paper, we elaborate on the strength 

A

cB

Idle-time

A A B A

cAcA

B

time

cA



3 
 

of both approaches by focusing on the model LP relaxations, and provide some insights on the use of 
discrete-time approaches for scheduling problems.  

 

Conventional Discrete-Time Formulation 

By assuming that all the jobs of the same class are identical, the discrete-time MILP formulation can be 
defined in terms of the index of classes i. The variable yi,t indicates that a job of class i starts at time period 
t. Since every job has to be performed once, an aggregate constraint can be imposed for every index i, as 
shown in (1). Moreover, one job must be performed at a time, leading to the non-overlapping constraint 
of the STN approach, as expressed in (2). This constraint is usually referred to as the backward aggregating 
constraint (Shah, Pantelides & Sargent., 1993). 

!𝑦#,%

&

%'(

= 𝑛#													∀𝑖 = 𝐴, 𝐵 (1) 

! ! 𝑦#,%0
%

%0'%123(#'4,5

≤ 1														∀𝑡 = 1… 	𝑇 (2) 

 

To leave no incomplete jobs at the end of the time horizon (t = T), we also impose constraint (3). 

! ! 𝑦#,%

&

%'&123;#'4,5

= 0 (3) 

 

In this problem, an effective formulation to account for the changeovers can be derived from 
propositional logic (see Eq. 4). As proposed by Ondeck et al. (2019), the changeover (in their case, the 
resource mobilization) condition is implied by the start of a new job of class i at a certain time period t, 
and the absence of a job of the same class being completed at the previous time period t-1. 

      𝑌#,%	Ù	¬𝑍#,%1( ⟹ 𝑋#,%												∀𝑖 = 𝐴, 𝐵; 	𝑡 = 1…𝑇 (4) 
 

Variable Yi,t is equivalent to the condition yi,t = 1, while Zi,t-1 is true if and only if a job of class i is being 
performed at time t-1. In propositional logic terms, it can be expressed as in Eq. (5). 

𝑍#,% 	⇔ 	 D 𝑌#,%0
%

%0'%123(

												∀𝑖 = 𝐴, 𝐵; 	𝑡 = 1…𝑇 (5) 

 

After obtaining the Conjunctive Normal Form (CNF) of the logic constraints and converting them into 
algebraic inequalities (Raman & Grossmann, 1994), proper arrangement of the terms yields constraint (6) 
(Ondeck et al., 2019). 



4 
 

𝑥#,% ≥ 	𝑦#,% − ! 𝑦#,%0
%1(

%0'%12

												∀𝑖 = 𝐴, 𝐵; 	𝑡 = 1…𝑇 (6) 

 

Variable xi,t, which may not necessarily be defined as 0-1, takes value 1 whenever a job of class i starts at 
period t and the machine was not performing another job of the same class right before the one being 
started at t.  

Moreover, note that the non-overlapping constraint (2) yields the implication: 𝑌#,% ⟹ ⋀ ¬𝑌#,%0
%1(
%0'%123( . In 

other words, 𝑦#,% = 1 ⟹ ∑ 𝑦#,%0
%1(
%0'%123( = 0, from which we derive the simplified expression (7).  

𝑥#,% ≥ 	𝑦#,% − 𝑦#,%12												∀𝑖 = 𝐴, 𝐵; 	𝑡 = 1…𝑇 (7) 
Finally, the objective function seeks to minimize the total changeover cost, given by Eq. (8). 

𝑀𝑖𝑛	𝑇𝐶 = ! !𝑐# ∙ 𝑥#,%

&

%'(#'4,5

 (8) 

 

In summary, the conventional MILP formulation is given by the minimization of (8), subject to constraints 
(1), (2), (3) and (7).  

If n is the total number of jobs, and ni is the number of jobs of class i, the LP relaxation of this problem 
yields the solution 𝑦#,% = 𝑛#/𝑛 for periods 𝑡 = 1, 𝑞 + 1, 2𝑞 + 1,… (𝑛 − 1)𝑞 + 1, and 𝑦#,% = 0 in any other 
case. In the illustrative example, where 𝑛# = 𝑛/2 , 𝑦#,% = 0.5 for both classes A and B at the periods 𝑡 =
1, 𝑞 + 1, 2𝑞 + 1,… (𝑛 − 1)𝑞 + 1, and 𝑦#,% = 0 in any other case. The total changeover cost amounts to TC 
= 1, since in our simplified case ci = 1 for any class i. Figure 2 illustrates the relaxed solution.  

 

Figure 2. Illustration of the solution yielded by the relaxed LP of the conventional time-indexed scheduling 
formulation  

 

In the relaxed LP solution, the jobs only pay for changeover costs at the beginning of the time horizon 
because for any subsequent starting period the single machine performs the same “fraction” (0.5) of each 
job, yielding 𝑦#,% − 𝑦#,%12 = 0 for all t > 1. Note that the solution at the root node is far from integrality, 
and certainly below the actual optimal value of the MILP (𝑇𝐶∗ = 2).  

B
A

B
A

B
A

B
A

B
A

B
A

B
A

yA,1 = 0.5

yB,1 = 0.5

yA,q+1 = 0.5

yB,q+1 = 0.5

…

…

xA,1 = 0.5

xB,1 = 0.5

q

B
A



5 
 

Branching on any of the variables yi,t of the first time period yields a still fractional solution, whose optimal 
value depends on the number of jobs n. For instance, if n = 8, by imposing 𝑦4,( = 1 we obtain the solution 
𝑦4,% = 3/7 and 𝑦5,% = 4/7 for the periods 𝑡 = 𝑞 + 1, 2𝑞 + 1, 3𝑞 + 1, and 𝑦#,% = 0 in any other case, with 
TC = 1.571. The solution after the first branching is depicted in Figure 3. In total, we need at least n/2 
depth-first branching to obtain an integer solution of our illustrative example. There may be more efficient 
ways of branching like, for instance, by partitioning the time domain in the summation of constraints (1). 
However, as we show later, it is still not easy for a modern MILP solver to come up with the optimal 
solution even using all the battery of current branch-and-cut strategies.  

 

Figure 3. Illustration of the solution yielded by the branch and bound algorithm applied to the 
conventional time-indexed scheduling formulation, after the first branching  

 

It can be easily observed that solution degeneracy increases with the number of classes i and the number 
of items n, making it harder to find the optimal solution. Kelly & Zyngier (2007) also note degeneracy in 
the time domain when introducing changeover constraints in discrete-time formulations, highlighting that 
such inequalities are not strong for effective branching. It is quite clear that there is a need for a stronger 
formulation, and with that purpose we introduce the dimension of campaigns, as next explained. 

 

Campaign-Based Formulation 

By definition, a “campaign” is regarded as an uninterrupted sequence of jobs of the same class. By 
introducing the new dimension r = 1 … ni we account for all possible campaign lengths (meaning the 
number of consecutive jobs) one may find in any feasible solution of the scheduling problem. Next, we 
introduce an extended set of binary variables yi,t,r which take value 1 whenever a campaign of r 
consecutive jobs of class i starts at period t, and zero otherwise. Therefore, the so-called campaign-based 
formulation of the scheduling problem can be modeled in terms of constraints (9) and (10), which follow 
directly from Eqs. (1) and (2). 

!!𝑟 ∙ 𝑦#,%,[

\]

['(

&

%'(

= 𝑛#													∀𝑖 = 𝐴, 𝐵 (9) 

! ! ! 𝑦#,%0,[

%

%0'%12∙[3(

\]

['(#'4,5

≤ 1														∀𝑡 = 1…𝑇 (10) 

 

A B
A

B
A

B
A

B
A

B
A

B
A

yA,1 = 1 yA,q+1 = (n-2) / 2(n-1)

yB,q+1 = n / 2(n-1) …

xA,1 = 1

xB,q+1 = n / 2(n-1)

B
A

…



6 
 

The set of possible campaign lengths for every class i is denoted Ri. In the most general case, Ri = {1, 2, …, 
ni}, where ni is the number of jobs of class i. The optimization model might decide on the one hand to 
develop all the jobs of the same class in a single campaign of length ni, or on the other hand, develop the 
jobs one by one, in ni different campaigns of length 1.  

As in the previous model, we also impose a boundary condition to prevent incomplete campaigns, which 
is enforced by Eq. (11). 

! ! ! 𝑦#,%,[

&

%'&12∙[3;

\]

['(#'4,5

= 0 (11) 

 

What is certainly unique in this alternative formulation is the straightforward calculation of changeover 
costs. From the definition of campaigns, we can simply impose a changeover cost for every selected 
campaign, as stated by Eq. (12).  

𝑥#,% = !𝑦#,%,[

\]

['(

															∀𝑖 = 𝐴, 𝐵; 𝑡 = 1…𝑇 (12) 

 

We notice that the condition xi,t ≤ 1 is guaranteed by constraint (10). Finally, the campaign-based 
formulation of our single machine scheduling problem is given by the minimization of function (8), subject 
to constraints (9), (10), (11) and (12). 

When compared to the conventional formulation, the number of variables is much larger, but the number 
of constraints remains exactly the same, with one important difference; the last constraints (12), the only 
whose number grows with both the number of classes and jobs, turn into equalities. Moreover, the right 
hand side (RHS) of Eq. (12) is at least as large as the RHS of its analogous constraint (7), as shown in the 
disaggregated version of constraint (12). In Eq. (12’), variables 𝑦#,%,( (accounting for campaigns of length r 
= 1) have been replaced by their analogous variables 𝑦#,% of the conventional formulation.    

𝑥#,% = 𝑦#,% +!𝑦#,%,[

\]

[';

														∀𝑖 = 𝐴, 𝐵; 𝑡 = 1…𝑇 (12’) 

 

The strength of the campaign-based approach is also explained by comparing Eqs. (2) and (10). The non-
overlapping condition (10) is more stringent than (2), since all the terms in the left hand side (LHS) of (2) 
are also in the LHS of (10), as shown in the disaggregated constraint (10’).  

! ! 𝑦#,%0
%

%0'%123(#'4,5

+ ! ! ! 𝑦#,%0,[

%

%0'%12∙[3(

\]

[';#'4,5

≤ 1														∀𝑡 = 1…𝑞 ∙ 𝑛 (10’) 

 

More specifically, there are many more building blocks (all the campaigns with length r > 1) to be 
potentially arranged in the list of assignments of the single machine, within a fixed time horizon, as 



7 
 

illustrated in Figure 4. And more important, each building block permits by itself to precisely account for 
the changeover cost. 

 

 

Figure 4. Comparison of the scheduling frameworks from the conventional (left) and the campaign-based 
(right) formulations   

In logic terms, the existence of an extended campaign (of length r > 1) in the new model implies condition 
(13), which the conventional formulation has to infer by itself. 

𝑌#,%,[ ⟹^𝑌#,%3(_1()2

[

_'(

							∀𝑖 = 𝐴, 𝐵; 𝑡 = 1…𝑇; 𝑟 = 1…𝑛#  (13) 

 

Note that the converse implication is not enforced by the constraints in the campaign-based model, 
meaning that an uninterrupted sequence of campaigns of shorter length is still a feasible solution, not 
necessarily constituting a single campaign. However, this is clearly discouraged by the objective function. 

The CNF of (13) yields constraints (14) (Raman & Grossmann, 1994), which can be interpreted as the bridge 
constraints between both formulations.    

𝑦#,%3(_1()2 ≥ 𝑦#,%,[							∀𝑖 = 𝐴, 𝐵; 𝑡 = 1…𝑇; 𝑟 = 1…𝑛#; 𝑘 = 1…𝑟 (14) 
 

Overall, although the number of binary variables has increased by the dimension of campaign lengths r, 
the new formulation proves to be very tight, as explained next.  

 

Numerical Results 

Assume we are concerned with sequencing 40 jobs divided into 10 classes (4 jobs per class), each job 
having 5 periods of length. Changeover costs meet the assumption described in the Motivating Example 
and are equal to one for any job class. Idle times are not allowed and the time horizon comprises exactly 
200 periods. The conventional STN formulation of this problem involves 4,001 variables (of which 2,000 
are necessarily 0-1) and 2,212 equations. Even though the optimal solution is once again straightforward, 
i.e. perform all the jobs of the same class in a single campaign, with the campaigns in any order, CPLEX 
29.1 (on an Intel Core i7 CPU, 2.60 GHz, 12 Gb RAM, single-thread mode) takes 52,500 iterations (475 

A

A

B

B

A

A

B

B

A B

B

A

A B

B

B

B

A

A

A

r = 1

r = 2

r = 3

r = 4



8 
 

nodes) and about 10 s to converge from the LP relaxed solution of TC = 1 to the optimal value of TC* = 10. 
In contrast, the campaign-based approach finds the optimal solution at the root node, in 0.11 s. If the 
number of items per class is increased to 10, the conventional model comprises 10,001 variables and 
5,512 equations, and CPLEX takes around 1 million iterations and 10 minutes to find the optimal solution, 
even though the lower bound hits the optimal value 2 minutes earlier. Interestingly, if we use the 
campaign-based formulation for this larger instance the optimal solution is once again found at the root 
node in less than one second (1500 iterations), although the number of variables is 5.5 times larger when 
compared to the conventional approach.  

More complex examples are presented as Supplementary Material, with jobs of different duration and 
time dependent changeover costs, also allowing for idle times. Specifically, the models considered are 
generalizations of the models presented in this paper, accounting for any job duration di, time horizon 
length T, and time-dependent changeover costs ci,t. In summary, we demonstrate that the campaign-
based formulation is able to reduce the computational time and the number of iterations by three orders 
of magnitude, always finding the optimal integer solution in the relaxed LP. 

 

Conclusion 

Introducing the concept of campaigns in the scheduling of jobs or operations of different classes proves 
to be an effective strategy for strengthening discrete-time formulations for particular problems. The 
tightness of the model mainly relies on the ability to account for changeover costs in a very 
straightforward way. Instead of checking the occurrence of a changeover at every single period of the 
time horizon, changeover costs are charged on every single campaign. In general terms, the key is to 
define larger building blocks instead of isolated jobs to be conveniently arranged in the planning 
timeframe. If a certain price or benefit can be associated to each building block, even at the expense of 
more binary variables, the modeling effort and the associate computational burden can be reduced 
significantly. We note that the results found in this work are not limited by the number of job classes, the 
length of the operations, or the existence of idle time periods. The key assumption is that class-dependent 
changeover costs are paid every time a new job starts, except for the case when a job of the same class is 
being completed, and the campaign is continued with no interruption. 

 

Acknowledgments 

Financial support from the Wilton E. Scott Institute for Energy Innovation at Carnegie Mellon University, 
the Center for Advanced Process Decision Making, Dept. of Chemical Engineering (Carnegie Mellon 
University), CONICET and UNL is gratefully acknowledged.  

 

References 

1. Cafaro DC, Grossmann IE (2014). Strategic planning, design, and development of the shale gas supply 
chain network. AIChE J., 60(6): 2122-2142 

2. Castro P, Barbosa-Póvoa AP, Matos H (2001). An improved RTN continuous-time formulation for the 
short-term scheduling of multipurpose batch plants. Ind. Eng. Chem. Res., 40: 2059-2068. 



9 
 

3. Drouven M, Cafaro DC, Grossmann IE (2017). Stochastic programming models for optimal shale well 
development and refracturing planning under uncertainty AIChE J., 63(11): 4799-4813. 

4. Kelly JD, Zyngier D. An improved MILP modeling of sequence-dependent switchovers for discrete-time 
scheduling problems. Ind. Eng. Chem. Res., 46(14): 4964-4973. 

5. Kondili E, Pantelides CC, Sargent RWH (1993). A general algorithm for short-term scheduling of batch 
operations—I. MILP formulation. Comput. Chem. Eng., 17(2): 211-227. 

6. Moniz S, Barbosa-Póvoa AP, de Sousa JP (2013). New general discrete-time scheduling model for 
multipurpose batch plants. Ind. Eng. Chem. Res., 52 (48): 17206-17220. 

7. Ondeck A, Drouven M, Blandino N, Grossmann IE (2019). Multi-operational planning of shale gas pad 
development Comput. Chem. Eng., 126: 83-101. 

8. Shah N, Pantelides CC, Sargent RWH (1993). A general algorithm for short-term scheduling of batch 
operations—II. Computational issues. Comput. Chem. Eng., 17(2): 229-244. 

9. Velez S, Dong Y, Maravelias CT (2017). Changeover formulations for discrete-time mixed-integer 
programming scheduling models. European Journal of Operational Research, 260(3): 949-963.  

10. Wolsey LA. (1997). MIP modelling of changeovers in production planning and scheduling problems. 
European Journal of Operational Research, 99(1): 154-165. 

11. Zeng Z, Cremaschi S (2018) Multistage Stochastic Models for Shale Gas Artificial Lift Infrastructure 
Planning. Computer Aided Chemical Engineering, 44: 1285–1290. 

12. Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based integer 
programming. Comput. Chem. Eng., 18: 563-578. 

  



10 
 

 

Supplementary Material for 

Strengthening Discrete-Time Scheduling Formulations by Introducing 
the Concept of Campaigns  

Diego C. Cafaroa & Ignacio E. Grossmannb 
a INTEC(UNL-CONICET), Güemes 3450, 3000 Santa Fe, ARGENTINA 
b Dept. of Chem. Eng., Carnegie Mellon University, 5000 Forbes Ave, 15213 Pittsburgh, PA 

 

Generalized Formulations  
The following formulations are generalizations of the models presented in the main text, accounting for 
any job duration di, time horizon length T, and time-dependent changeover costs ci,t. 

Discrete-Time Conventional Formulation  

																											𝑀𝑖𝑛																													𝑇𝐶 = ! !𝑐#,% ∙ 𝑥#,%

&

%'(#'4,5

 (S1) 

																													𝑠. 𝑡.																												!𝑦#,%

&

%'(

= 𝑛#													∀𝑖 = 𝐴, 𝐵 (S2) 

! ! 𝑦#,%0
%

%0'%1b]3(#'4,5

≤ 1														∀𝑡 = 1… 	𝑇 (S3) 

! ! 𝑦#,%

&

%'&1b]3;#'4,5

= 0 (S4) 

𝑥#,% ≥ 	𝑦#,% − 𝑦#,%1b]												∀𝑖 = 𝐴, 𝐵; 	𝑡 = 1…𝑇 (S5) 
  

Campaign-Based Formulation  

																											𝑀𝑖𝑛																													𝑇𝐶 = ! !𝑐#,% ∙ 𝑥#,%

&

%'(#'4,5

 (S6) 

																													𝑠. 𝑡.																												!!𝑟 ∙ 𝑦#,%,[

\]

['(

&

%'(

= 𝑛#													∀𝑖 = 𝐴, 𝐵 (S7) 

! ! ! 𝑦#,%0,[

%

%0'%1b]∙[3(

\]

['(#'4,5

≤ 1														∀𝑡 = 1…𝑇 (S8) 

! ! ! 𝑦#,%,[

&

%'&1b]∙[3;

\]

['(#'4,5

= 0 (S9) 



11 
 

𝑥#,% = !𝑦#,%,[

\]

['(

															∀𝑖 = 𝐴, 𝐵; 𝑡 = 1…𝑇 (S10) 

Computational Experiments 

We present the results for a more complex example in which the duration of the tasks and the number of 
jobs vary with the job class. Furthermore, changeover costs are time-dependent and idle times are also 
allowed. Table S1 presents the number of jobs per class and the jobs duration for all the problem 
instances. Note that the total time required to process all the jobs is 180 time periods. 

Table S1. Job classes, number of jobs per class, and job duration 
Job Class p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

No of Jobs per Class 4 6 4 6 4 6 4 6 4 6 
Job Duration (periods) 2 4 5 2 4 5 2 4 5 3 

 

Changeover costs depend on both the job class and the time period when a new campaign starts. To 
determine the value of the changeover cost ci,t we use the equation given in (S11).  

𝑐#,% = 𝛼# + 𝛽# ∙ 𝑡 + 𝛾# ∙ 𝑡; + 𝛿# ∙ 𝑡g.h + 𝜀# ∙ sin(𝑡 ∙ 𝜋 4⁄ )											∀𝑖, 𝑡 (S11) 

Table S2. Parameters determining the changeover costs for different job classes at different time periods 
Job Class p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

ai 0 0 3 20 0 20 10 5 10 10 
b i 0.1 0.1 0 -0.1 0 0 0.1 0 -0.1 0 
gi 0 0.001 0 0.001 0 0 -0.0001 0 0.001 0 
di 0 0 0 0 1 -1 -1 0.5 -0.5 0 
ei 0 0 0 0 0 0 0 0 0 5 

 
Figure S1. Changeover costs over time for different job classes in the case study 

P1

P2

P3

P4

P5

P6

P7
P8

P9

P10

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200

Change-
over 
Costs
(ci,t)

Time periods (t)



12 
 

Values of coefficients ai, bi, gi, di, ei for all problem instances are given in Table S2. Note that constant, 
increasing, decreasing, convex, concave and oscillating cost functions are all accounted for, as shown in 
Figure S1.   

We solve this example using both the conventional and the proposed campaign-based formulation, with 
different time horizon lengths. In Table S3 we summarize the computational results (model sizes, number 
of iterations and CPU times), while Table S4 presents the optimal solutions found (0% optimality gap). We 
note that all the solutions yielded by the proposed approach are found at the relaxed LP node (0% 
integrality gap), while conventional formulations average 89.2% of integrality gap.  

  
Table S3. Model statistics and computational performance of both models for different instances 

Time 
Horizon 
Length 

Conventional Model  Campaign-Based Model 

Eqs. Vars. 
0-1 

Vars. 
CPU 

Time (s) 
Iter. 
x103 

 
Eqs. Vars. 

0-1 
Vars. 

CPU 
Time (s) 

Iter. 
x103 

180 1,992 3,601 1,800 5287.2 21,492  1,992 10,801 9,000 0.562 3.8 
190 2,102 3,801 1,900 310.4 1,446  2,102 11,401 9,500 0.405 3.7 
200 2,212 4,001 2,000 187.8 885  2,212 12,001 10,000 0.312 3.6 

 

Table S4. Optimal solution of every problem instance 
Time 

Horizon 
Length 

Jobs in Campaign / Campaign Starting Period 
Min TC 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 

180 4 / 17 6 / 25 4 / 113 6 / 57 4 / 1 6 / 151 4 / 49 6 / 89 4 / 69 6 / 133 61.634 
190 4 / 17 6 / 25 4 / 114 6 / 57 4 / 1 6 / 161 4 / 49 6 / 89 4 / 69 6 / 134 59.770 
200 4 / 17 6 / 25 4 / 114 6 / 57 4 / 1 6 / 171 4 / 49 6 / 89 4 / 69 6 / 150 59.382 

 


